Eight-fjords shallow underwater videos

Occurrence Observation
最新バージョン Wildlife.ai により出版 4月 4, 2024 Wildlife.ai
ホーム:
https://subsim.se/
公開日:
2024年4月4日
公開者:
Wildlife.ai
ライセンス:
CC-BY 4.0

DwC-A形式のリソース データまたは EML / RTF 形式のリソース メタデータの最新バージョンをダウンロード:

DwC ファイルとしてのデータ ダウンロード 12 レコード English で (6 KB) - 更新頻度: not planned
EML ファイルとしてのメタデータ ダウンロード English で (22 KB)
RTF ファイルとしてのメタデータ ダウンロード English で (12 KB)

説明

Dataset of species records extracted via Yolov8 model from 1 hour-recordings using baited remote underwater video at a depth of between 0.6-3.2 meters in the coastal zone of the 8-fjords area at the Swedish west-coast.

データ レコード

この オカレンス(観察データと標本) リソース内のデータは、1 つまたは複数のデータ テーブルとして生物多様性データを共有するための標準化された形式であるダーウィン コア アーカイブ (DwC-A) として公開されています。 コア データ テーブルには、12 レコードが含まれています。

この IPT はデータをアーカイブし、データ リポジトリとして機能します。データとリソースのメタデータは、 ダウンロード セクションからダウンロードできます。 バージョン テーブルから公開可能な他のバージョンを閲覧でき、リソースに加えられた変更を知ることができます。

バージョン

次の表は、公にアクセス可能な公開バージョンのリソースのみ表示しています。

引用方法

研究者はこの研究内容を以下のように引用する必要があります。:

Green L, Svensson L, Burman E, Germishuys J, Anton V, Obst M (2024). Eight-fjords shallow underwater videos. Version 1.2. Wildlife.ai. Occurrence dataset. https://ipt.gbif.org.nz/resource?r=gobin_example_dataset&v=1.2

権利

研究者は権利に関する下記ステートメントを尊重する必要があります。:

パブリッシャーとライセンス保持者権利者は Wildlife.ai。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF登録

このリソースをはGBIF と登録されており GBIF UUID: 653b41c5-f839-4df9-b6f5-cfb896ac2b52が割り当てられています。   GBIF New Zealand によって承認されたデータ パブリッシャーとして GBIF に登録されているWildlife.ai が、このリソースをパブリッシュしました。

キーワード

Invasive species; alien species; non-indigenous species; exotic species; shallow water; coastal; Round goby; gobiidae; fish; crabs; BRUV; baited camera records; Invasive species; alien species; non-indigenous species; exotic species; shallow water; coastal; Round goby; gobiidae; fish; crabs; BRUV; baited camera records

連絡先

Leon Green
  • メタデータ提供者
  • 最初のデータ採集者
  • 連絡先
  • 研究代表者
  • Researcher
University of Gothenburg
Linnéa Svensson
  • 最初のデータ採集者
  • Research assistant
University of Gothenburg
Emil Burman
  • 最初のデータ採集者
  • Project Assistant
University of Gothenburg
Jannes Germishuys
  • プログラマー
  • 最初のデータ採集者
  • Data Scientist
Combine
Victor Anton
  • メタデータ提供者
  • データ公開者
  • 連絡先
  • GM
WILDLIFE.AI
NZ
Matthias Obst
  • データ提供者
  • メタデータ提供者
  • 連絡先
  • Researcher
University of Gothenburg

地理的範囲

These records cover shallow bays in Sweden's first test-bed for marine ecosystem-based management: The 8-fjords+ area. This area is a freshwater-influenced fjord system containing multiple Natura-2000 sites and a range of habitats including shallow and deep soft and hard bottoms. Records in the dataset are from 3-1 meters in depth, mainly centred around small marinas.

座標(緯度経度) 南 西 [57.991, 11.544], 北 東 [57.991, 11.544]

生物分類学的範囲

All fish were identified to species or family level, Brachyuran crabs were identified to species level.

Species Carcinus maenas (European Green Crab), Ctenolabrus rupestris (Goldsinny Wrasse), Gobius niger (Black Goby), Neogobius melanostomus (Round Goby)

時間的範囲

開始日 / 終了日 2023-09-12 / 2023-09-13

プロジェクトデータ

Sweden is now facing its first-ever biological invasion by a non-indigenous species (NIS) of fish (the round goby, Neogobius melanostomus) in a fully marine environment. This invasion event is unprecedented, and current knowledge severely limits any form of action to limit the range or the rate of the goby invasion. There are previously no successful eradications of the round goby, and there are no examples where marine invasive fish have been eradicated or limited by human ingenuity. The situation is also unique since the Swedish west-coast is a very different environment to the degraded and species poor Baltic Sea where the round goby is spreading rapidly. We cannot expect the invasion to occur identically in these two regions and we need new knowledge to analyze the situation. The purpose of the proposed studies is to provide Swedish agencies and the global research community with knowledge of how two important ecological processes can help to protect the marine coastal environments from rapidly becoming colonized by invasive fish. These two processes are (1) top down control from predation, and (2) lack of niche space due to high biodiversity. This knowledge will be obtained through three separate scientific studies where we aim to: (1) observe to what extent predators such as cod (Gadus morhua) and eel (Anguilla anguilla) prey on round goby; (2) relate biodiversity measurements to the density of round gobies over time. If the two studied processes are shown to mitigate round goby numbers, conservation of both predators and biodiversity can be used as ecological “bio-control” tools to limit the spread of the species. We also expect this knowledge to add to the importance of protecting predators and biodiversity as conservation goals by themselves, and lead to combined conservation strategies that are both cost-effective and highly sustainable.

タイトル The role of predators and biodiversity as ecological barriers for the round goby invasion on the Swedish marine west-coast
ファンデイング Project funded by Swedish Environmental Protection Agency (Project grants in the handling of alien invasive species 2020, Environmental research fund), grant nr. 2020-00055, to Leon Green.
Study Area Description These records cover shallow bays in Sweden's first test-bed for marine ecosystem-based management: The 8-fjords+ area. This area is a freshwater-influenced fjord system containing multiple Natura-2000 sites and a range of habitats including shallow and deep soft and hard bottoms. Records in the dataset are from 3-1 meters in depth, mainly centred around small marinas.

収集方法

Sampling with video cameras is a relatively common method for investigating flora and fauna in marine environments. When it comes to fish census, baited camera systems are often used (abbreviated as BRUV after the English "Baited Remote Underwater Video"), which can be placed on the seabed or freely suspended in the water column with the help of a buoy on the surface (see e.g., Sherman et al., 2020, and Cambra et al., 2021). An advantage of these systems compared to, for example, ROVs (remotely operated underwater vehicles) or drop-video (a type of "camera sled" dragged across the seabed) is that they are stationary and do not scare away fish through movements and sounds. However, this means that the camera covers a smaller area of water, and therefore bait is used to attract the fish nearby to move in front of the camera. The bait used is often scented food such as fish scraps and shrimp. For the detection of cryptobenthic fish (small, bottom-dwelling species that often hide in crevices or among vegetation), the BRUV method is still in the developmental stage. Because such small fish (especially bullheads) can be difficult to distinguish and identify on video, it is valuable to design camera systems that visualize their characteristics as effectively as possible. In this study, a system with neutral-colored "background boards" has been used, which the fish need to swim in front of to reach the bait. This way, characteristics such as color, pattern, and fin shape are visualized, improving the possibility of species identification. Video cameras baited with frozen shrimp (4 per camera, approximately 45 grams each in wet weight) were placed on the seabed either directly from a pier/dock when possible, or with the help of snorkelling. Each camera system was placed at a minimum distance of 30 meters from each other to avoid fish moving between the cameras during filming. The depth at which the cameras were placed varied between 0.6 – 3.2 meters. To control for lighting conditions, the video rig was always oriented so that the camera filmed northward (and thus received ample light against the background).

Study Extent At each site, an average of 4 recordings were made, with each camera recording video for 1 hour, resulting in a total recording time of 4 hours per site. Records in this data are per video. Each video is fitted with a unique identifier.

Method step description:

  1. The team followed the methodology described in the SUBSIM software to analyse and publish the occurrences

追加のメタデータ

代替識別子 653b41c5-f839-4df9-b6f5-cfb896ac2b52
https://ipt.gbif.org.nz/resource?r=gobin_example_dataset