Koster historical biodiversity assessment

Ocorrência
Versão mais recente published by Wildlife.ai on out 22, 2024 Wildlife.ai
Publication date:
22 de outubro de 2024
Published by:
Wildlife.ai
Licença:
CC-BY 4.0

Baixe a última versão do recurso de dados, como um Darwin Core Archive (DwC-A) ou recurso de metadados, como EML ou RTF:

Dados como um arquivo DwC-A download 72.369 registros em English (834 KB) - Frequência de atualização: quando necessário
Metadados como um arquivo EML download em English (18 KB)
Metadados como um arquivo RTF download em English (10 KB)

Descrição

Dataset of species records extracted from video footage recorded by remotely operated vehicles (ROVs) in the marine protected area Kosterhavets nationalpark on the Swedish west-coast. The original movies were collected during 1997-2023. This data set is based on videos of 70 transects across slopes and rock walls in the National Park at depths between 7-105 m. Species records were extracted from the movies using Yolov8 model, while depth information was extracted with the easyOCR python package from the ROV video overlays. Original videos are archived and accessible at Tjärnö Marine Laboratory’s (Univerisity of Gothenburg). The analysis was performed using the Swedish platform for subsea image analysis (www.subsim.se). We acknowledge the support of the technical officers and ROV pilots at Tjärnö Marine Laboratory, in particular Tomas Lundälv, Roger Johannesson, and Joel White.

Registros de Dados

Os dados deste recurso de ocorrência foram publicados como um Darwin Core Archive (DwC-A), que é o formato padronizado para compartilhamento de dados de biodiversidade como um conjunto de uma ou mais tabelas de dados. A tabela de dados do núcleo contém 72.369 registros.

This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for download in the downloads section. The versions table lists other versions of the resource that have been made publicly available and allows tracking changes made to the resource over time.

Versões

A tabela abaixo mostra apenas versões de recursos que são publicamente acessíveis.

Como citar

Pesquisadores deveriam citar esta obra da seguinte maneira:

Nilsson C (2024). Koster historical biodiversity assessment. Version 1.4. Wildlife.ai. Occurrence dataset. https://ipt.gbif.org.nz/resource?r=koster_historical_assessment&v=1.4

Direitos

Pesquisadores devem respeitar a seguinte declaração de direitos:

O editor e o detentor dos direitos deste trabalho é Wildlife.ai. This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF Registration

Este recurso foi registrado no GBIF e atribuído ao seguinte GBIF UUID: 51d0bd32-e215-45ea-a04d-47a474336125.  Wildlife.ai publica este recurso, e está registrado no GBIF como um publicador de dados aprovado por GBIF New Zealand.

Palavras-chave

Occurrence; Machine Observations; YOLOv8; Benthic Invertebrates; Koster; Hard Substrate; Marine Biology; Marine Biodiversity; Marine Ecology; Subtidal Zone; Observation; Machine Observations; YOLOv8; Benthic Invertebrates; Koster; Hard Substrate; Marine Biology; Marine Biodiversity; Marine Ecology; Subtidal Zone

Contatos

Christian Nilsson
  • Provedor Dos Metadados
  • Originador
  • Ponto De Contato
  • Pesquisador Principal
  • Researcher
University of Gothenburg
  • Anders Zornsgatan 34B
412 72 Gothenburg
Västra Götaland
SE
  • 0730682795
Joel White
  • Ponto De Contato
  • Research Engineer
University of Gothenburg, Tjärnö Marine Laboratory
  • Laboratorievägen 10
452 96 Strömstad
Västra Götaland
SE
  • +46 31-786 96 03
Victor Anton
Emil Burman
  • Programador
  • Researcher
University of Gothenburg
  • Medicinaregatan 7B
413 90 Gothenburg
Västra Götaland
SE
Jurie Germishuys
  • Programador
  • Data Scientist
Combine Control Systems AB
  • Västra Hamngatan 8
411 17 Gothenburg
Västra Götaland
SE
Matthias Obst
  • Proprietário
  • Researcher
University of Gothenburg
  • Medicinaregatan 7B
413 90 Gothenburg
Västra Götaland
SE
  • +4676-618 38 27

Cobertura Geográfica

Data collected from the area west of the island of Yttre Vattenholmen. For additional information, feel free to contact authors.

Coordenadas delimitadoras Sul Oeste [58,9, 11,1], Norte Leste [58,9, 11,1]

Cobertura Temporal

Data Inicial / Data final 1997-08-27 / 2023-10-09

Dados Sobre o Projeto

Biodiversity assessment of distribution size and relative abundance of 17 unique benthic invertebrate taxa. Assessment made by applying a YOLOv8 model trained on image data from ROV footage of the study site to 70 ROV transects from 1997-2023.

Título Depth Learning - Using Deep-Learning Object Detection Software to Investigate Spatiotemporal Vertical Ecological Trends on a Submarine Canyon Wall in Northern Skagerrak
Descrição da Área de Estudo Rock walls and slopes from 7-105m in the area west of the island of Yttre Vattenholmen.

O pessoal envolvido no projeto:

Christian Nilsson
Jurie Germishuys
Matthias Obst

Métodos de Amostragem

Sampling was performed by ROV from Tjärnö Marine Laboratory. Transects were taken for various purposes and are non-standardized. Thus, time spent at each depth and distance to substrate may vary. Transects are defined as consecutive filming of the study site until departure and may have depths removed if the ROV was not filming the habitat of interest for this study (hard substrate) at these depths. Additionally, inconsistency may exist between substrate depths and ROV depths where the ROV was not filming perpendicular to the seafloor. For further information, contact Joel White or Christian Nilsson.

Área de Estudo Archived ROV footage from the area west of Yttre Vattenholmen was utilized. All footage available with sufficient depth information was utilized. Footage was collected for various purposes, therefore sampling frequency & temporal resolution varies.
Controle de Qualidade Average maxcount per depth (organismQuantity) was added to provide insight regarding false positives. If individualCount for an observation is significantly higher than organismQuantity a false positive may be possible. For further information, contact Christian Nilsson.

Descrição dos passos do método:

  1. ROV depth for each image frame of videos was extracted from the video overlay using the EasyOCR python package. Depth was connected to YOLOv8 model observations through frame number in R, after which maximum and mean individual count was summarized from each transect for each taxon.

Citações bibliográficas

  1. Koster historical invertebrate model - SUBSIM 17tx. (model used to generate annotations) https://doi.org/10.5281/zenodo.13589902

Metadados Adicionais

Identificadores alternativos 51d0bd32-e215-45ea-a04d-47a474336125
https://ipt.gbif.org.nz/resource?r=koster_historical_assessment